

# Transistor Characteristics and Thermopower Modulation of KTaO<sub>3</sub> Single Crystal Based Field-Effect Transistors with *a*-C12A7 Gate Dielectric

Akira Yoshikawa<sup>1</sup>, Kosuke Uchida<sup>1</sup>, Kunihito Koumoto<sup>1</sup>, Takeharu Kato<sup>2</sup>, Yuichi Ikuhara<sup>2,3</sup>, Hiromichi Ohta<sup>1,4</sup>

<sup>1</sup> Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603
<sup>2</sup> Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587
<sup>3</sup> Institute of Engineering Innovation, The University of Tokyo, Yayoi, Bunkyo113-8656
<sup>4</sup> PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi 332-0012

**Keywords:** KTaO<sub>3</sub>, amorphous C12A7, field modulation, thermopower

**Abstract.** We show herein fabrication and field-modulated thermopower for KTaO<sub>3</sub> single-crystal based field-effect transistors (FETs). The KTaO<sub>3</sub> FET exhibits field effect mobility of ~8 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>, which is ~4 times larger than that of SrTiO<sub>3</sub> FETs. The thermopower of the KTaO<sub>3</sub> FET decreased from 600 to 220  $\mu$ VK<sup>-1</sup> by the application of gate electric field up to 1.5 MVcm<sup>-1</sup>, ~400  $\mu$ VK<sup>-1</sup> below that of an SrTiO<sub>3</sub> FET, clearly reflecting the smaller carrier effective mass of KTaO<sub>3</sub>. The thermoelectric power factor of KTaO<sub>3</sub> was estimated to be ~1.5 mVm<sup>-1</sup>K<sup>-2</sup> at room temperature, which is approximately 50 % for that of SrTiO<sub>3</sub>.

## Introduction

Thermoelectric energy conversion technology attracts attention to convert the waste heat into electricity.[1] Generally, the performance of thermoelectric materials is evaluated in terms of a dimensionless figure of merit,  $ZT = S^2 \cdot \sigma \cdot T \cdot \kappa^{-1}$ , where  $Z, T, S, \sigma$  and  $\kappa$  are a figure of merit, the absolute temperature, the thermopower, the electrical conductivity, and the thermal conductivity, respectively. Today, thermoelectric materials with ZT > 1, which is necessary for practical applications, are being rigorously explored though the ZT values of several materials such as Bi<sub>2</sub>Te<sub>3</sub> and PbTe exceed 1 because these materials are not attractive, particularly operating at high temperatures (T~1,000K). Further, the use of these heavy metals should be limited to specific environments such as space because they are mostly toxic, low in abundance as natural resources, and thus not environmentally benign. Based on this background, recently, metal oxides such as layered cobaltates [2] and electron doped SrTiO<sub>3</sub> [3] attract much attention for thermoelectric power generation material at high temperatures on the basis of their potential advantages over heavy metallic alloys in chemical and thermal robustness.

Thermoelectric materials are explored mostly using charge carrier-doped semiconductors with various doping levels because the  $S^2 \cdot \sigma$  value must be enhanced according to the commonly observed trade-off relationship between two material parameters in terms of charge carrier concentration (*n*):  $\sigma$  increases almost linearly with increasing *n* until ionized impurity scattering or electron-electron scattering becomes dominant, while |S| decreases with *n*. Therefore, a great deal of material is needed to optimize thermoelectric properties.

Very recently, Sakai *et al.*<sup>[4]</sup> reported thermoelectric properties of several Ba-doped KTaO<sub>3</sub> single crystals ( $n = 5.4 \times 10^{18} - 1.4 \times 10^{20}$  cm<sup>-3</sup>). They found that heavy (>10<sup>20</sup> cm<sup>-3</sup>) electron doping in KTaO<sub>3</sub> would provide large thermoelectric properties. KTaO<sub>3</sub> (S.G.: *Pm3m*, lattice parameter a = 3.989 Å) is a typical band insulator with a large band gap of ~3.8 eV.[5] Metallic

conductivity in KTaO<sub>3</sub> can be obtained by the appropriate impurity doping [6] and/or the introduction of oxygen vacancies.[7-9] KTaO<sub>3</sub> exhibits very high Hall mobility of >10<sup>4</sup> cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup> at 2 K.[10] Since these physical properties of KTaO<sub>3</sub> are similar to those of SrTiO<sub>3</sub>,[11,12] which exhibits largest *ZT* among transition metal oxides (*n*-type), KTaO<sub>3</sub> would be promising candidate for thermoelectric application.

In order to examine the thermoelectric properties of S and  $\sigma$  for KTaO<sub>3</sub>, we fabricated a field effect transistor (FET) structure on a single crystal KTaO<sub>3</sub> because а FET structure on single-crystalline material would be a powerful tool in optimizing thermoelectric properties because it provides the charge carrier dependence of both S- and  $\sigma$ -values simultaneously.[13] Here we report the fabrication and thermopower modulation of the KTaO<sub>3</sub> FET. The resultant KTaO<sub>3</sub> FET exhibits excellent transistor characteristics: on-off current ratio of  $\sim 10^5$ , sub-threshold swing S-factor of 1.2 Vdecade<sup>-1</sup>, threshold gate voltage  $V_{\text{th}}$  of +5.2 V, and field effect mobility  $\mu_{\text{FE}}$  of ~8 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>. The thermopower |S| of this KTaO<sub>3</sub> FET can be modulated from 600 to 220  $\mu VK^{-1}$  by the application of gate electric field up to 1.5 MVcm<sup>-1</sup>. The thermoelectric power factor  $S^2 \cdot \sigma$  of KTaO<sub>3</sub> was estimated to be ~1.5  $mWm^{-1}K^{-2}$  at room temperature, which is approximately 50 % for that of SrTiO<sub>3</sub>.

# **Experimental**

The schematic structure and photograph of the KTaO<sub>3</sub> FET are shown in Figs. 1(a) and 1(b), respectively. First, we treated (001) KTaO<sub>3</sub> single crystal plates  $(10 \times 10 \times 0.5)$ mm, SHINKOSHA Co.) with buffered  $NH_4F$ -HF solution (BHF, pH = 4.5) to obtain an atomically smooth surface [14] because atomically smooth heterointerface of the gate insulator/oxide may be necessary for FET fabrication.[15] The NH<sub>4</sub>F concentration was kept at 10 mol/l. After the BHF treatment, we obtained a relatively smooth surface with steps (~0.4 nm) and terraces [Fig. 2(b)] as compared to an untreated surface [Fig. 2(a)]. Second, 20-nm-thick metallic Ti films, which would serve as source and drain electrodes, were



Fig. 1: (a) The schematic device structure and (b) a photograph of the KTaO<sub>3</sub> FET. Ti films (20-nm thick) are used as the source, drain and gate electrodes. A 200-nm thick *a*-C12A7 film is used as the gate insulator. Channel length (*L*) and channel width (*W*) are 200 and 400  $\mu$ m, respectively.





deposited onto the stepped KTaO<sub>3</sub> surface by electron beam (EB, no substrate heating, base pressure ~10<sup>-4</sup> Pa) evaporation through a stencil mask. Third, 200-nm-thick amorphous 12CaO·7Al<sub>2</sub>O<sub>3</sub> (*a*-C12A7, permittivity  $\varepsilon_r = 12$ ) glass film was deposited by a pulsed laser deposition (PLD, ~3 Jcm<sup>-2</sup>pulse<sup>-1</sup>, oxygen pressure ~0.1 Pa). It should be noted that *a*-C12A7 glass would be an appropriate gate insulator for SrTiO<sub>3</sub> and KTaO<sub>3</sub> as compared to *a*-Al<sub>2</sub>O<sub>3</sub>.[15,16] Finally, a 30-nm Ti film was deposited by EB evaporation as described above. In order to reduce the off current, the FETs were annealed at 150 °C in air. Transistor characteristics of the resultant KTaO<sub>3</sub> FETs were measured by using a semiconductor device analyzer (B1500A, Agilent Technologies) at room temperature.

## Results

Figure 2(c) shows a cross-sectional high-resolution transmission electron microscope image of the a-C12A7/KTaO<sub>3</sub> interface region (HRTEM, TOPCON EM-002B, acceleration voltage 200 kV, featureless a-C12A7 TOPCON). The (upper part) is observed, although the KTaO<sub>3</sub> layer exhibits a lattice (lower part). A broad halo is seen in the selected area electron diffraction patterns of a-C12A7, indicating that amorphous a-C12A7 film was deposited on the KTaO<sub>3</sub> layer.

Figure 3 summarizes typical transistor characteristics, such transfer as characteristics, field-effect mobility, sheet charge concentration, and the output of these FETs. The drain current  $(I_d)$  of the KTaO<sub>3</sub> FET increased markedly as the gate voltage  $(V_g)$  increased, hence the channel was *n*-type, and electron carriers were accumulated by positive  $V_{\rm g}$  [Fig. 3(a)]. Relatively large hysteresis (~1 V) in  $I_{\rm d}$  was also observed, most likely due to traps (~ $10^{12}$  cm<sup>-2</sup>) at the *a*-C12A7/KTaO<sub>3</sub> interface. The on-off current ratio and the S-factor were  $>10^5$  and  $\sim 1.2$  Vdecade<sup>-1</sup>, respectively. The threshold gate voltage  $(V_{\rm th})$ , obtained from a linear fit of the  $I_{d}^{0.5}$ - $V_{g}$  plot [Fig. 3(b)], was +5.2 V.

Using the above measured values, we calculated the sheet charge concentration  $(n_{xx})$  and the field-effect mobility  $(\mu_{FE})$  of the KTaO<sub>3</sub> FETs. The  $n_{xx}$  values were obtained from  $n_{xx} = C_i (V_g - V_{th})$ , where  $C_i$  was the capacitance per unit area (51 nFcm<sup>-2</sup>). The  $\mu_{FE}$  values were obtained from  $\mu_{FE} = g_m[(W/L)C_i \cdot V_d]^{-1}$ , where  $g_m$ 



Fig.3: Typical transistor characteristics of a KTaO<sub>3</sub> FET with 200-nm thick *a*-C12A7 ( $\varepsilon_r$ =12) gate insulator at room temperature [(a) Transfer characteristic ( $I_d - V_g$  plot), (b)  $Id^{0.5}-V_g$  plot, (c) field-effect mobility ( $\mu$ FE)-sheet charge density ( $n_{xx}$ ) -  $V_g$  plots, (d) Output characteristic ( $I_d - V_d$  plot)]. The FET exhibits on-off current ratio ~10<sup>5</sup>, sub-threshold swing *S*-factor ~1.2 V·decade-1 and threshold voltage  $V_{\text{th}} \sim +5.2$  V. The value of  $\mu$ FE increases drastically with  $V_g$  and reaches ~8 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup> or ~25% of the room temperature Hall mobility of electron-doped KTaO<sub>3</sub> ( $\mu_{\text{Hall}} \sim 30$  cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>).

was the transconductance  $\partial I_d / \partial V_g$ . As shown in Fig. 3(c),  $\mu_{FE}$  of the FET increased drastically with  $V_{\rm g}$  and reached ~8 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>, which is ~25% of the room temperature Hall of mobility electron-doped KTaO<sub>3</sub> ~30  $(\mu_{\text{Hall}})$ cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>). We also note that  $\mu_{\rm FE}$  of the KTaO<sub>3</sub> FETs were a factor of 4 greater than those of SrTiO<sub>3</sub> FETs, [13] most likely due to the difference in effective mass of the charge carrier  $m_e^*$  (KTaO<sub>3</sub>: 0.13 m<sub>0</sub>, SrTiO<sub>3</sub>: 1.16 m<sub>0</sub>). Furthermore, we observed a clear pinch-off and current saturation in  $I_d$  [Fig. 3(d)], indicating that the operation of this FET conformed to standard FET theory.

Then, we measured field-modulated thermopower ( $S_{\rm FE}$ ) of the KTaO<sub>3</sub> FET. First, a temperature difference ( $\Delta T = 0.2-1.5$  K) was introduced between the source and drain electrodes by using two Peltier devices. Then, thermo-electromotive force ( $V_{\rm TEMF}$ ) was measured during the  $V_g$ -sweeping. The



Fig. 4: Field-modulated thermopower (*S*) for the KTaO<sub>3</sub> FET channel. *S* for the SrTiO<sub>3</sub> FET channel (Ref. 13) is also plotted in the inset for comparison. Thermopower |*S*| of the KTaO<sub>3</sub> FET is roughly ~400  $\mu$ VK<sup>-1</sup> smaller than that of SrTiO<sub>3</sub> FET and can be tuned from 600 to 220  $\mu$ VK<sup>-1</sup>.

values of *S* were obtained from the slope of  $V_{\text{TEMF}}$ - $\Delta T$  plots. Figure 4 shows  $S_{\text{FE}}$ - $V_g$  plots for the KTaO<sub>3</sub> FETs. The  $S_{\text{FE}}$ -values are negative, confirming that the channel is *n*-type.  $|S_{\text{IFE}}$ gradually decreases from 600 to 220  $\mu$ VK<sup>-1</sup> by the application of gate electric field up to 1.5 MVcm<sup>-1</sup>, due to the fact that  $n_{xx}$  increases with the  $V_g$  increases. These  $|S|_{\text{FE}}$  values are approximately 400  $\mu$ VK<sup>-1</sup> lower than those for a SrTiO<sub>3</sub> FET as shown in the inset.[13] Since the value of  $|S|_{\text{FE}}$  strongly depends on  $m_e^*$ , this result reflects the fact that  $m_e^*$  of KTaO<sub>3</sub> (0.13  $m_0$ ) is lower than that of SrTiO<sub>3</sub> (1.16  $m_0$ ).

Here we roughly estimate the maximum thermoelectric power factor ( $PF = S \cdot \sigma$ ) of KTaO<sub>3</sub> at room temperature. The sheet conductance  $\sigma_{xx}$  of KTaO<sub>3</sub> was a factor of ~4 greater than that of SrTiO<sub>3</sub>. The  $|S|_{FE}$ -value of KTaO<sub>3</sub> was 220  $\mu$ VK<sup>-1</sup>, while that of SrTiO<sub>3</sub> was 600  $\mu$ VK<sup>-1</sup> by the application of gate electric field up to 1.5 MVcm<sup>-1</sup>. Thus,  $S^2_{FE} \cdot \sigma_{xx}$  KTaO<sub>3</sub> /  $S^2_{FE} \cdot \sigma_{xx}$  SrTiO<sub>3</sub> is ~0.5. Since the maximum  $PF_{300 \text{ K}}$  of SrTiO<sub>3</sub> is ~3 mWm<sup>-1</sup>K<sup>-2</sup>,[17] KTaO<sub>3</sub> would exhibit maximum  $PF_{300 \text{ K}}$  of ~1.5 mWm<sup>-1</sup>K<sup>-2</sup>, which corresponds well with the reported  $PF_{300 \text{ K}}$  value (1.4 mWm<sup>-1</sup>K<sup>-2</sup>[4]).

#### **Summary**

We have fabricated single crystal KTaO<sub>3</sub>-based field-effect transistors using amorphous 12CaO·7Al<sub>2</sub>O<sub>3</sub> glass gate insulator. The resultant FET exhibit excellent characteristics: on-off current ratio of ~10<sup>5</sup>, sub-threshold swing S-factor of 1.2 Vdecade<sup>-1</sup>, threshold gate voltage  $V_{\text{th}}$  of +5.2 V, and field effect mobility  $\mu_{\text{FE}}$  of ~8 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup> (a factor of 4 greater than for SrTiO<sub>3</sub> FETs). The observed values of thermopower for the KTaO<sub>3</sub> FETs were ~400  $\mu$ VK<sup>-1</sup> below those of SrTiO<sub>3</sub> FETs, clearly demonstrating the difference of carrier effective mass  $m_e^*$ (KTaO<sub>3</sub>: 0.13  $m_0$ , SrTiO<sub>3</sub>: 1.16  $m_0$ ). The thermoelectric power factor  $S^2 \cdot \sigma$  of KTaO<sub>3</sub> was estimated to be ~1.5 mWm<sup>-1</sup>K<sup>-2</sup> at room temperature, which is approximately 50 % for that of

 $SrTiO_3$ , demonstrating the effectiveness of FET structure for the rapid exploration of thermoelectric materials.

#### Acknowledgments

A part of this work was financially supported by MEXT (Nano Materials Science for Atomic-scale Modification, 20047007).

#### References

[1] T. M. Tritt, M. A. Subramanian, H. Bottner, T. Caillat, G. Chen, R. Funahashi, X. Ji, M. Kanatzidis, K. Koumoto, G. S. Nolas, J. Poon, A. M. Rao, I. Terasaki, R. Venkatasubramanian and J. Yang, MRS Bull. (special issue on harvesting energy through thermoelectrics: power generation and cooling) **31**, 188 (2006) & articles therein.

- [2] I. Terasaki, Y. Sasago and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
- [3] H.Ohta, Mater. Today **10**, 44 (2007).
- [4] A. Sakai, T. Kanno, S. Yotsuhashi, H. Adachi and Y. Tokura, *Jpn. J. Appl. Phys.* 48 097002 (2009).
- [5] W. S. Baer, J. Phys. Chem. Solids 28, 677 (1967).
- [6] W. R. Hosler and H. P. R. Frederikse, Solid State Commun. 7, 1443 (1969).
- [7] M. Tsukioka, J. Tanaka and Y. Miyazawa, J. Phys. Soc. Jpn. 46, 1785 (1979).
- [8] G. O. Deputy and R. W. Vest, J. Am. Ceram. Soc. 61, 321 (1978).
- [9] V. F. Shamrai, A. V. Arakcheeva, V. V. Grinevich and A. B. Mikhailova, *Cristallogr Rep+*. **50**, 779 (2004).
- [10] S. H. Wemple, *Phys. Rev. A* 137, 1575 (1965).
- [11] O. N. Tufte and P. W. Chapman, Phys. Rev. 155, 796 (1967).
- [12] H. P. R. Frederikse, W. R. Thurber and W. R. Hosler, Phys. Rev. 134, A442 (1964).
- [13] H. Ohta, Y. Masuoka, R. Asahi, T. Kato, Y. Ikuhara, K. Nomura and H. Hosono, *Appl. Phys. Lett.* **95**, 113505 (2009).

[14] M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto and H. Koinuma, *Science* **266**, 1540 (1994).

[15] K. Ueno, I. H. Inoue, T. Yamada, H. Akoh, Y. Tokura and H. Takagi, *Appl. Phys. Lett.* 84, 3726 (2004).

- [16] K. Ueno, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura and H. Takagi, *Appl. Phys. Lett.* 83, 1755 (2003).
- [17] H. Ohta, K. Sugiura and K. Koumoto, Inorg. Chem. 47, 8429 (2008).