

Thin-Film Transistor Fabricated on the SrTiO₃ Epitaxial Film Annealed in an Oxygen Atmosphere

Kosuke Uchida¹, Akira Yoshikawa¹, Kunihito Koumoto¹, Takeharu Kato², Yuichi Ikuhara^{2,3} and Hiromichi Ohta^{1,4,}

¹Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan ²Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan

³Institute of Engineering Innovation, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan ⁴PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi 332-0012, Japan

Keywords: SrTiO₃, Epitaxial Film, Oxide TFT, Pulsed Laser Deposition, Thermal annealing

Abstract. We report herein fabrication and characterization of a thin-film transistor (TFT) using a SrTiO₃ epitaxial film grown on (001) face of LSAT [(LaAlO₃)_{0.3}(Sr₂AlTaO₆)_{0.7}] substrate by a pulsed laser deposition technique. Abrupt stepped-and-terraced surface of SrTiO₃ film, which can be obtained by the thermal annealing of the layer-by-layer grown SrTiO₃ film at 900°C in an oxygen pressure of ~1 Pa, is found to be a key material to obtain excellent TFT characteristics. In the present case, the SrTiO₃-TFT exhibits following characteristics at room temperature: on-to-off current ratio >10⁵, threshold gate voltage $V_{\rm th} = +6.5$ V, sub-threshold swing S-factor ~2.1 Vdecade⁻¹, and field effect mobility $\mu_{\rm FE} \sim 0.8$ cm²V⁻¹s⁻¹.

Introduction

Strontium titanate (SrTiO₃, cubic perovskite, *Pm3m*, lattice constant a = 3.905 Å) is known as a band insulator with a wide bandgap of ~3.2 eV. SrTiO₃ has attracted growing attention for the next generation of oxide electronics because SrTiO₃ exhibits several unique properties: Charge carrier concentration of SrTiO₃ can be easily controlled from insulator to metal (n_{3D} ~ 10^{21} cm⁻³) by appropriate substitutional doping such as Nb or La [1,2]. SrTiO₃ exhibits extremely high Hall mobility of > 10^4 cm²V⁻¹s⁻¹ at 2 K [3]. High quality single crystals of SrTiO₃, which is commercially available, are widely applied for the heteroepitaxial film growth of several perovskite oxides. Recent finding of high-density two-dimensional electron gas (2DEG) by Ohtomo and Hwang [4], which is confined within extremely thin layer at the $LaAlO_3/SrTiO_3$ heterointerface, accelerates the motivation toward the realization of $SrTiO_3$ -based electronic devices.

In order to realize the SrTiO₃-based electronic devices, SrTiO₃-based field effect transistor (FET) is essentially important because charge carrier density in SrTiO₃ can be modulated electrostatically. A number of SrTiO₃-based FETs have been reported to date using high quality single crystals of SrTiO₃ with stepped and terraced surface [5-10]. Very recently, Ueno and co-workers observed superconducting transition ($T_c \sim 0.4$ K) of electrostatically accumulated two-dimensional electron channel (sheet charge concentration, $n_{2D} = 1-10 \times 10^{13}$ cm⁻²) in SrTiO₃ single crystal using electric double layer gating technique [11]. They modulated the mean depth of carrier distribution from 16 to 3 nm, which is far thinner than the thickness of single crystal plate (~100 µm). Thus, one considers that SrTiO₃-based thin film transistor (TFT) with good transistor characteristics is appropriate to further clarify the condensed-matter physics of SrTiO₃. However, SrTiO₃-based thin TFT has not been reported so far.

In our preliminary study, we fabricated $SrTiO_3$ -TFTs using as-deposited $SrTiO_3$ epitaxial films, which were composed of several grains. The resultant TFT was normally-on type transistor and the values of the on—to—off current ratio and S-factor are $<10^2$ and ~20 Vdecade⁻¹, indicating that oxygen vacancies and/or carrier traps were generated in the SrTiO₃ film (data not shown). In order to improve the TFT characteristics, the as-deposited SrTiO₃ films were annealed in an oxygen atmosphere.

Here we report fabrication and characterization of SrTiO₃ TFTs using high quality epitaxial films of SrTiO₃, which was obtained by the thermal annealing of the layer-by-layer grown SrTiO₃ film at 900°C in an oxygen pressure ~1 Pa. We selected amorphous 12CaO·7Al₂O₃ (*a*-C12A7, permittivity $\varepsilon_r = 12$) as the gate insulator for the fabrication of TFT because *a*-C12A7 gated SrTiO₃ FETs exhibit excellent transistor characteristics [10]. The resultant SrTiO₃-TFT exhibits following characteristics at room temperature: on-to-off current ratio >10⁵, sub-threshold swing ~2.1 Vdecade⁻¹, and field effect mobility ~0.8 cm²V⁻¹s⁻¹.

Experimental

SrTiO₃ epitaxial films (thickness: ~60 nm) were fabricated on (001) face of LSAT $[(LaAlO_3)_{0.3}(Sr_2AlTaO_6)_{0.7}]$ substrates by a pulsed laser deposition (PLD) technique (KrF excimer laser, ~0.5 Jcm⁻¹pulse⁻¹, 20 ns, 5 Hz). During the film deposition, we monitored specular spot intensity of reflection high energy electron diffraction (RHEED) to control the film thickness. Substrate temperature was kept at 900°C during the film deposition. After the film deposition, pure O₂ gas was additionally introduced into the PLD chamber to fill up oxygen deficiency of the SrTiO₃ film. Then, the film was cooled down to room temperature. Crystallographic orientation and thickness of the films were evaluated by high resolution x-ray diffraction (HRXRD, ATX-G, Rigaku Co.) using monochrometed Cu Ka₁ beam.

Then, we fabricated a top-gate-type TFT structure on the SrTiO₃ single crystal films as

schematically shown in Fig. 1. First, 20-nm-thick metallic Ti films, used as the source and drain electrodes, were deposited through a stencil mask by electron beam (EB) evaporation (base pressure $\sim 10^{-4}$ Pa, no substrate heating). Then, 160 nm-thick amorphous-12CaO·7Al₂O₃ (*a*-C12A7, ε_r =12) film was deposited through a stencil mask by PLD (~3 $Jcm^{-2}pulse^{-1}$, oxygen pressure ~0.1 Pa) using dense polycrystalline C12A7 ceramic as target. Finally, gate electrode, which is 20-nm-thick metallic Ti film, was deposited through a stencil mask by EB evaporation. The resultant TFTs were annealed at 200°C in air atmosphere to reduce off current.

Fig. 1: Schematic structure of the SrTiO₃-TFT. Ti films (20 nm thick) are used as the source, drain and gate electrodes. A 160 nm-thick *a*-C12A7 film is used as the gate insulator. Channel length (*L*) and channel width (*W*) are 200 and 400 μ m, respectively.

Results

In the out of plane XRD pattern of the resultant $SrTiO_3$ film, Pendellösung fringes were clearly observed at around 002 diffraction peak of $SrTiO_3$ (data not shown). Thus, we confirmed the film thickness (60 nm) using the Pendellösung fringes. Surface morphology was observed by an atomic force microscope (AFM, NanoScope E, D.I.)[Fig. 2(a)]. Stepped and

Fig. 2: (a)Topographic AFM image of the $SrTiO_3$ epitaxial film annealed in an oxygen atmosphere [Oxygen pressure: 1 Pa]. (b)Cross-sectional high-resolution transmission electron microscope (HRTEM) images of the 160-nm-thick *a*-C12A7/SrTiO₃/LSAT heterointerface.

100228048-3

terraced surface are seen. Figure 2(b) shows the cross sectional high-resolution transmission electron of microscope image the a-C12A7/SrTiO₃/LSAT interface region (HRTEM, TOPCON EM-002B, acceleration voltage of 200 kV, TOPCON). Featureless structure of a-C12A7 is seen though lattice image is clearly seen in the SrTiO₃ film. A broad halo pattern is seen in the selected area electron diffraction patterns o f a-C12A7, indicating that a-C12A7 glass film was deposited on the SrTiO₃ film.

Transistor characteristics of the resultant SrTiO₃-TFTs were measured by using a semiconductor device analyzer (B1500A, Agilent Technologies) at room temperature. The channel width (W) and the channel length (L) of the TFT are 400 and 200 µm, respectively. Figure 3 shows typical (a) transfer and (b) output characteristics of the resultant TFT. Drain current (I_d) of the FET increased as the gate voltage (V_g) increased, hence the channel was *n*-type, and electron carriers were accumulated by

Fig. 3. (a) Typical transfer and (b) output characteristics of the TFT using the high quality SrTiO₃ epitaxial film, which was annealed in an oxygen atmosphere. The inset of (a) shows $I_d^{0.5}$ - V_g plot of the TFT.

positive V_g [Fig. 3(a)]. Rather large threshold gate voltage (V_{gth}) of +6.5 V, obtained from a linear fit of an $I_d^{0.5}$ - V_g plot [inset of (a)], is observed, which corresponds electron trapping state density of ~5 × 10¹² cm⁻². We observed a clear pinch-off and current saturation in I_d [Fig. 3(b)], indicating that the operation of this FET conformed to standard FET theory. The on—to—off current ratio, S-factor and threshold voltage, are >10⁵, ~2.1 Vdecade⁻¹ and +6.5 V, respectively. We then calculated the sheet charge concentration (n_{xx}), and the field effect mobility (μ_{FE}) of the SrTiO₃-TFTs. The n_{xx} values were obtained from $n_{xx} = C_i (V_g - V_{th})$, where C_i was the capacitance per unit area (67 nFcm⁻²). The μ_{FE} values were obtained from $\mu_{FE} = g_m[(W/L)C_i \cdot V_d]^{-1}$, where g_m is transconductance $\partial I_d / \partial V_g$. The maximum μ_{FE} of the TFT was ~0.8 cm²V⁻¹s⁻¹ ($V_g = 47$ V, $n_{xx} = 2.0 \times 10^{13}$ cm⁻²).

100228048-4

Summary

We have demonstrated fabrication and device characteristics of a thin-film transistor (TFT) fabricated in single-crystalline SrTiO₃ thin film grown on (001)face of $(LaAlO_3)_{0.3}(Sr_2AlTaO_6)_{0.7}$ substrate by a pulsed laser deposition technique. Abrupt stepped-and-terraced surface of SrTiO₃ film, which can be obtained by the thermal annealing of the layer-by-layer grown SrTiO₃ film at 900°C in an oxygen pressure of ~1 Pa, is found to be a key material to obtain excellent TFT characteristics. In the present case, the SrTiO₃-TFT exhibits following characteristics at room temperature: on-to-off current ratio $>10^5$, sub-threshold swing ~2.1 Vdecade⁻¹, and field effect mobility ~ $0.8 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$.

Acknowledgements

A part of this work was financially supported by MEXT (Nano Materials Science for Atomic-scale Modification, 20047007).

References

- [1] T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, *Phys. Rev. B*, 63, 113104 (2001).
- [2] S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys, 97, 034106 (2005).
- [3] O. N. Tufte and P. W. Chapman, *Phys. Rev.*155, 796 (1967).
- [4] A. Ohtomo and H.Y. Hwang, Nature. 427, 423 (2004).
- [5] I. Pallecchi, G. Grassano, D. Marrié, L. Pellegrino, M. Putti, and A. S. Siri, *Appl. Phys. Lett.* **78**, 2244 (2001).

[6] K. Ueno, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, and H. Takagi, *Appl. Phys. Lett.* 83, 1755 (2003).

[7] K. Shibuya, T. Ohnishi, T. Uozumi, T. Sato, M. Lippmaa, M. Kawasaki, K. Nakajima, T. Chikyow, and H. Koinuma, *Appl. Phys. Lett.* **88**, 212116 (2006).

[8] K. Shibuya, T. Ohnishi, M. Lippmaa, M. Kawasaki, and H. Koinuma, *Appl. Phys. Lett.* **85**, 425 (2004).

[9] H. Nakamura, H. Takagi, I. H. Inoue, Y. Takahashi, T. Hasegawa, and Y. Tokura, *Appl. Phys. Lett.* **89**, 133504 (2006).

[10] H. Ohta, Y. Masuoka, R. Asahi, T. Kato, Y. Ikuhara, K. Nomura, and H. Hosono, *Appl. Phys. Lett.* **95**, 113505 (2009).

[11] K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, *Nat. Mater.* **7**, 855 (2008).